• Volunteer
  • Teach
  • Programs
    • Chats with Change Makers
    • Engineers Week
    • IMAX Films
    • Introduce a Girl to Engineering
    • World Engineering Day
    • Future City
  • Engineering Activities
  • Engineering Careers
  • Support Us
  • Store
  • Search
  • Join
Donate
Join
  • Volunteer
  • Teach
  • Programs
    • Chats with Change Makers
    • Engineers Week
    • IMAX Films
    • Introduce a Girl to Engineering
    • World Engineering Day
    • Future City
  • Engineering Activities
  • Engineering Careers
  • Support Us
  • Store
  • Search
  • Join
  1. View More Activities

Shaky Ground

Students observe liquefaction in action and realize that for buildings to withstand an earthquake, they need a stronger foundation or other techniques to stabilize them.

Time
  • 1 to 2 Hours
Careers
  • Civil
  • Materials Science
Grade
  • 6-8
Topic
  • Green & Climate
  • Structures
Leader Notes
Materials

Per Small Group:

  • Sand
  • D, C, or 9-volt battery (not AA or smaller)
  • 3 paper cups, 5- to 8-ounce size
  • Water
  • Spoon
  • Drinking straws
  • Toothpicks
Instructions

Students see liquefaction in action and realize that for buildings to withstand an earthquake, they need a stronger foundation or other techniques to stabilize them.

  1. Ask the class about their experience with earthquakes.
  2. Explain the problem with liquefaction: Many buildings are built on landfill, sand, or mud that can liquefy. Liquefaction causes much of the damage during earthquakes.
  3. Distribute a paper cup of dry sand to each student group. Tell them to set a battery vertically on top of the sand. Tell students: Do not shake the sand in the cup.
  4. Students should try to knock the battery over by drumming gently with a spoon about halfway up the side of the cup.
  5. Next, give each group a new cup of sand and a cup of water. Add the water to the cup of sand in small amounts, pausing to let the sand absorb it. Explain to students: You may see bubbles on the sides of the cup. This means the sand is still absorbing water. When the sand no longer absorbs the water, it means nearly all the spaces between the grains are full of water. But the sand still looks solid.
  6. Stand a battery on top of the wet sand and try to tip it over the same way as before.
  7. Discuss the results, focusing on what is happening between the particles of sand and the water pressure.
  8. Ask students if they can think of a way to stabilize the battery so that it won’t topple over, even on the wet sand mixture. Pass out toothpicks and straws and give students time to experiment. Note: Students should make sure that the “piles” (toothpicks and straws) reach to the bottom of the cup without touching the battery.
Guiding Questions
  • Is it easier to tip the battery over on dry sand or wet sand? Why do you think that is?
  • What’s the best way to keep the battery from toppling over, whether the sand is wet or dry?
  • When you drum on the side of the cup of dry sand, why doesn’t the movement topple the battery?
  • If a plot of ground appears to be solid, with no water in sight, how can an earthquake make it liquefy?
STEM Connections
  • Liquefaction is when soil becomes saturated with water and temporarily loses strength and acts as a fluid. Liquefaction is most often caused by vibrations from earthquakes. Once liquefaction has occurred, the soil is not able to support the foundations of structures. In earthquake-prone areas, engineers make sure structures can withstand the liquefaction process. One technique developed by an engineer in Mexico City is to use a glue-like “wallpaper” on existing buildings and bridges to strengthen them. Another method engineers use to stabilize buildings is by driving piles, or post-like structures of timber, steel, or concrete, into the ground.
  • Earthquakes push and pull horizontally (sideways) on structures. To stabilize buildings against earthquakes, engineers use solid walls of reinforced concrete or masonry—called “shear walls”—which have great stiffness in the horizontal direction. The First Interstate World Center is a 73 floor skyscraper in Los Angeles with a solid concrete core right up the center of the building, allowing it to withstand an earthquake of magnitude 8.3 on the Richter scale.
  • Interestingly, a method for preventing liquefaction in the ground under structures is to use sand compaction piles. Engineers place very dense columns of sand in soft ground. The moisture in the surrounding soil helps the piles become dense and strong, almost like concrete.

Enjoy this activity?

Join our community and receive activities, early access to programs, and other special news, and/or leave feedback on this activity below!

Thank you! Your submission is processing.

Cancel reply

Your email address will not be published. Required fields are marked *

Submitting...

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Print
Downloads
Share this activity with your network!
Enjoy this activity? Please let your friends know!
Share Activity
Challenge created by: ASCE logo More Activities from American Society of Civil Engineers
Downloads
  • Shaky Ground activity
Related Activities
View All
Aqueduct
Aqueduct
  • 1 to 2 Hours
  • 3-8
View Activity
Build a Bridge
Build a Bridge
  • 45 minutes or Less
  • 3-8
View Activity
Soilless Farming
Soilless Farming
American Society of Mechanical Engineering
  • 1 to 2 Hours
  • 6-12
View Activity
Solar Power Up!
Solar Power Up!
American Society of Mechanical Engineering
  • 1 to 2 Hours
  • 6-8
View Activity
DiscoverE helps create activities like this around Green & Climate, Structures for children in Middle School to help prepare them for STEM careers in fields like Civil or Materials Science.

Find our resources helpful?
Please consider donating.

Make a donation

Want to find out how you can volunteer?

Get Involved

DiscoverE works to provide every student with a STEM experience and the resources, programs, and connections to improve the understanding of engineering through a united voice and a global distribution network.

The development of this site was made possible by a grant from the United Engineering Foundation (UEF).

About Us

  • Our Story
  • Our Board & Staff
  • Our Impact
  • Donate

Get Involved

  • Messages Matter
  • Teach
  • Volunteer
  • Our Programs
  • Store

Resources

  • Learn about Engineering Careers
  • Engineering Activities
  • Our Blog
  • Logos & Graphics
  • Outreach Grants

Connect

  • Facebook
  • LinkedIn
  • Instagram
  • YouTube
  • Twitter
  • Pinterest
  • Contact Us
Website designed and developed by RedSwan5.

© 2025 DiscoverE. All rights reserved.

Privacy Policy | Terms & Conditions

Join Our Community

Stay up-to-date with all the programs and resources that Discover E has to offer!

Login or Create Account

All of the content on this site is free!

Registering for the site helps us tailor future activities, webinars, and events so that we can serve you better.

Thank you for your interest and for helping us in our mission to transform lives as we put the E in STEM!

Login Form

Log in or sign up

Forgot your password?

Don’t have an account? Sign up!

We use cookies that are necessary to make our site work. We may also use additional cookies to analyze, improve, and personalize our content and your digital experience. For more information, see our Cookie Policy.OKCookie Policy